Serveur d'exploration sur la rapamycine et les champignons

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Finding new components of the target of rapamycin (TOR) signaling network through chemical genetics and proteome chips.

Identifieur interne : 001899 ( Main/Exploration ); précédent : 001898; suivant : 001900

Finding new components of the target of rapamycin (TOR) signaling network through chemical genetics and proteome chips.

Auteurs : Jing Huang [États-Unis] ; Heng Zhu ; Stephen J. Haggarty ; David R. Spring ; Heejun Hwang ; Fulai Jin ; Michael Snyder ; Stuart L. Schreiber

Source :

RBID : pubmed:15539461

Descripteurs français

English descriptors

Abstract

The TOR (target of rapamycin) proteins play important roles in nutrient signaling in eukaryotic cells. Rapamycin treatment induces a state reminiscent of the nutrient starvation response, often resulting in growth inhibition. Using a chemical genetic modifier screen, we identified two classes of small molecules, small-molecule inhibitors of rapamycin (SMIRs) and small-molecule enhancers of rapamycin (SMERs), that suppress and augment, respectively, rapamycin's effect in the yeast Saccharomyces cerevisiae. Probing proteome chips with biotinylated SMIRs revealed putative intracellular target proteins, including Tep1p, a homolog of the mammalian PTEN (phosphatase and tensin homologue deleted on chromosome 10) tumor suppressor, and Ybr077cp (Nir1p), a protein of previously unknown function that we show to be a component of the TOR signaling network. Both SMIR target proteins are associated with PI(3,4)P2, suggesting a mechanism of regulation of the TOR pathway involving phosphatidylinositides. Our results illustrate the combined use of chemical genetics and proteomics in biological discovery and map a path for creating useful therapeutics for treating human diseases involving the TOR pathway, such as diabetes and cancer.

DOI: 10.1073/pnas.0407117101
PubMed: 15539461
PubMed Central: PMC527135


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Finding new components of the target of rapamycin (TOR) signaling network through chemical genetics and proteome chips.</title>
<author>
<name sortKey="Huang, Jing" sort="Huang, Jing" uniqKey="Huang J" first="Jing" last="Huang">Jing Huang</name>
<affiliation wicri:level="4">
<nlm:affiliation>Howard Hughes Medical Institute, Harvard Institute of Chemistry and Cell Biology, and Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA 02138, USA. jinghuang@mednet.ucla.edu</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Howard Hughes Medical Institute, Harvard Institute of Chemistry and Cell Biology, and Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA 02138</wicri:regionArea>
<placeName>
<region type="state">Massachusetts</region>
<settlement type="city">Cambridge (Massachusetts)</settlement>
</placeName>
<orgName type="university">Université Harvard</orgName>
</affiliation>
</author>
<author>
<name sortKey="Zhu, Heng" sort="Zhu, Heng" uniqKey="Zhu H" first="Heng" last="Zhu">Heng Zhu</name>
</author>
<author>
<name sortKey="Haggarty, Stephen J" sort="Haggarty, Stephen J" uniqKey="Haggarty S" first="Stephen J" last="Haggarty">Stephen J. Haggarty</name>
</author>
<author>
<name sortKey="Spring, David R" sort="Spring, David R" uniqKey="Spring D" first="David R" last="Spring">David R. Spring</name>
</author>
<author>
<name sortKey="Hwang, Heejun" sort="Hwang, Heejun" uniqKey="Hwang H" first="Heejun" last="Hwang">Heejun Hwang</name>
</author>
<author>
<name sortKey="Jin, Fulai" sort="Jin, Fulai" uniqKey="Jin F" first="Fulai" last="Jin">Fulai Jin</name>
</author>
<author>
<name sortKey="Snyder, Michael" sort="Snyder, Michael" uniqKey="Snyder M" first="Michael" last="Snyder">Michael Snyder</name>
</author>
<author>
<name sortKey="Schreiber, Stuart L" sort="Schreiber, Stuart L" uniqKey="Schreiber S" first="Stuart L" last="Schreiber">Stuart L. Schreiber</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2004">2004</date>
<idno type="RBID">pubmed:15539461</idno>
<idno type="pmid">15539461</idno>
<idno type="doi">10.1073/pnas.0407117101</idno>
<idno type="pmc">PMC527135</idno>
<idno type="wicri:Area/Main/Corpus">001870</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">001870</idno>
<idno type="wicri:Area/Main/Curation">001870</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">001870</idno>
<idno type="wicri:Area/Main/Exploration">001870</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Finding new components of the target of rapamycin (TOR) signaling network through chemical genetics and proteome chips.</title>
<author>
<name sortKey="Huang, Jing" sort="Huang, Jing" uniqKey="Huang J" first="Jing" last="Huang">Jing Huang</name>
<affiliation wicri:level="4">
<nlm:affiliation>Howard Hughes Medical Institute, Harvard Institute of Chemistry and Cell Biology, and Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA 02138, USA. jinghuang@mednet.ucla.edu</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Howard Hughes Medical Institute, Harvard Institute of Chemistry and Cell Biology, and Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA 02138</wicri:regionArea>
<placeName>
<region type="state">Massachusetts</region>
<settlement type="city">Cambridge (Massachusetts)</settlement>
</placeName>
<orgName type="university">Université Harvard</orgName>
</affiliation>
</author>
<author>
<name sortKey="Zhu, Heng" sort="Zhu, Heng" uniqKey="Zhu H" first="Heng" last="Zhu">Heng Zhu</name>
</author>
<author>
<name sortKey="Haggarty, Stephen J" sort="Haggarty, Stephen J" uniqKey="Haggarty S" first="Stephen J" last="Haggarty">Stephen J. Haggarty</name>
</author>
<author>
<name sortKey="Spring, David R" sort="Spring, David R" uniqKey="Spring D" first="David R" last="Spring">David R. Spring</name>
</author>
<author>
<name sortKey="Hwang, Heejun" sort="Hwang, Heejun" uniqKey="Hwang H" first="Heejun" last="Hwang">Heejun Hwang</name>
</author>
<author>
<name sortKey="Jin, Fulai" sort="Jin, Fulai" uniqKey="Jin F" first="Fulai" last="Jin">Fulai Jin</name>
</author>
<author>
<name sortKey="Snyder, Michael" sort="Snyder, Michael" uniqKey="Snyder M" first="Michael" last="Snyder">Michael Snyder</name>
</author>
<author>
<name sortKey="Schreiber, Stuart L" sort="Schreiber, Stuart L" uniqKey="Schreiber S" first="Stuart L" last="Schreiber">Stuart L. Schreiber</name>
</author>
</analytic>
<series>
<title level="j">Proceedings of the National Academy of Sciences of the United States of America</title>
<idno type="ISSN">0027-8424</idno>
<imprint>
<date when="2004" type="published">2004</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Humans (MeSH)</term>
<term>Jurkat Cells (MeSH)</term>
<term>Models, Biological (MeSH)</term>
<term>Protein Array Analysis (MeSH)</term>
<term>Protein Kinases (genetics)</term>
<term>Protein Kinases (metabolism)</term>
<term>Proteomics (MeSH)</term>
<term>Saccharomyces cerevisiae (drug effects)</term>
<term>Saccharomyces cerevisiae (genetics)</term>
<term>Saccharomyces cerevisiae (metabolism)</term>
<term>Saccharomyces cerevisiae Proteins (genetics)</term>
<term>Saccharomyces cerevisiae Proteins (metabolism)</term>
<term>Signal Transduction (MeSH)</term>
<term>Sirolimus (pharmacology)</term>
<term>TOR Serine-Threonine Kinases (MeSH)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Analyse par réseau de protéines (MeSH)</term>
<term>Cellules Jurkat (MeSH)</term>
<term>Humains (MeSH)</term>
<term>Modèles biologiques (MeSH)</term>
<term>Protein kinases (génétique)</term>
<term>Protein kinases (métabolisme)</term>
<term>Protéines de Saccharomyces cerevisiae (génétique)</term>
<term>Protéines de Saccharomyces cerevisiae (métabolisme)</term>
<term>Protéomique (MeSH)</term>
<term>Saccharomyces cerevisiae (effets des médicaments et des substances chimiques)</term>
<term>Saccharomyces cerevisiae (génétique)</term>
<term>Saccharomyces cerevisiae (métabolisme)</term>
<term>Sirolimus (pharmacologie)</term>
<term>Sérine-thréonine kinases TOR (MeSH)</term>
<term>Transduction du signal (MeSH)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="genetics" xml:lang="en">
<term>Protein Kinases</term>
<term>Saccharomyces cerevisiae Proteins</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="metabolism" xml:lang="en">
<term>Protein Kinases</term>
<term>Saccharomyces cerevisiae Proteins</term>
</keywords>
<keywords scheme="MESH" qualifier="drug effects" xml:lang="en">
<term>Saccharomyces cerevisiae</term>
</keywords>
<keywords scheme="MESH" qualifier="effets des médicaments et des substances chimiques" xml:lang="fr">
<term>Saccharomyces cerevisiae</term>
</keywords>
<keywords scheme="MESH" qualifier="genetics" xml:lang="en">
<term>Saccharomyces cerevisiae</term>
</keywords>
<keywords scheme="MESH" qualifier="génétique" xml:lang="fr">
<term>Protein kinases</term>
<term>Protéines de Saccharomyces cerevisiae</term>
<term>Saccharomyces cerevisiae</term>
</keywords>
<keywords scheme="MESH" qualifier="metabolism" xml:lang="en">
<term>Saccharomyces cerevisiae</term>
</keywords>
<keywords scheme="MESH" qualifier="métabolisme" xml:lang="fr">
<term>Protein kinases</term>
<term>Protéines de Saccharomyces cerevisiae</term>
<term>Saccharomyces cerevisiae</term>
</keywords>
<keywords scheme="MESH" qualifier="pharmacologie" xml:lang="fr">
<term>Sirolimus</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="pharmacology" xml:lang="en">
<term>Sirolimus</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Humans</term>
<term>Jurkat Cells</term>
<term>Models, Biological</term>
<term>Protein Array Analysis</term>
<term>Proteomics</term>
<term>Signal Transduction</term>
<term>TOR Serine-Threonine Kinases</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Analyse par réseau de protéines</term>
<term>Cellules Jurkat</term>
<term>Humains</term>
<term>Modèles biologiques</term>
<term>Protéomique</term>
<term>Sérine-thréonine kinases TOR</term>
<term>Transduction du signal</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">The TOR (target of rapamycin) proteins play important roles in nutrient signaling in eukaryotic cells. Rapamycin treatment induces a state reminiscent of the nutrient starvation response, often resulting in growth inhibition. Using a chemical genetic modifier screen, we identified two classes of small molecules, small-molecule inhibitors of rapamycin (SMIRs) and small-molecule enhancers of rapamycin (SMERs), that suppress and augment, respectively, rapamycin's effect in the yeast Saccharomyces cerevisiae. Probing proteome chips with biotinylated SMIRs revealed putative intracellular target proteins, including Tep1p, a homolog of the mammalian PTEN (phosphatase and tensin homologue deleted on chromosome 10) tumor suppressor, and Ybr077cp (Nir1p), a protein of previously unknown function that we show to be a component of the TOR signaling network. Both SMIR target proteins are associated with PI(3,4)P2, suggesting a mechanism of regulation of the TOR pathway involving phosphatidylinositides. Our results illustrate the combined use of chemical genetics and proteomics in biological discovery and map a path for creating useful therapeutics for treating human diseases involving the TOR pathway, such as diabetes and cancer.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">15539461</PMID>
<DateCompleted>
<Year>2004</Year>
<Month>12</Month>
<Day>27</Day>
</DateCompleted>
<DateRevised>
<Year>2018</Year>
<Month>11</Month>
<Day>13</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Print">0027-8424</ISSN>
<JournalIssue CitedMedium="Print">
<Volume>101</Volume>
<Issue>47</Issue>
<PubDate>
<Year>2004</Year>
<Month>Nov</Month>
<Day>23</Day>
</PubDate>
</JournalIssue>
<Title>Proceedings of the National Academy of Sciences of the United States of America</Title>
<ISOAbbreviation>Proc Natl Acad Sci U S A</ISOAbbreviation>
</Journal>
<ArticleTitle>Finding new components of the target of rapamycin (TOR) signaling network through chemical genetics and proteome chips.</ArticleTitle>
<Pagination>
<MedlinePgn>16594-9</MedlinePgn>
</Pagination>
<Abstract>
<AbstractText>The TOR (target of rapamycin) proteins play important roles in nutrient signaling in eukaryotic cells. Rapamycin treatment induces a state reminiscent of the nutrient starvation response, often resulting in growth inhibition. Using a chemical genetic modifier screen, we identified two classes of small molecules, small-molecule inhibitors of rapamycin (SMIRs) and small-molecule enhancers of rapamycin (SMERs), that suppress and augment, respectively, rapamycin's effect in the yeast Saccharomyces cerevisiae. Probing proteome chips with biotinylated SMIRs revealed putative intracellular target proteins, including Tep1p, a homolog of the mammalian PTEN (phosphatase and tensin homologue deleted on chromosome 10) tumor suppressor, and Ybr077cp (Nir1p), a protein of previously unknown function that we show to be a component of the TOR signaling network. Both SMIR target proteins are associated with PI(3,4)P2, suggesting a mechanism of regulation of the TOR pathway involving phosphatidylinositides. Our results illustrate the combined use of chemical genetics and proteomics in biological discovery and map a path for creating useful therapeutics for treating human diseases involving the TOR pathway, such as diabetes and cancer.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Huang</LastName>
<ForeName>Jing</ForeName>
<Initials>J</Initials>
<AffiliationInfo>
<Affiliation>Howard Hughes Medical Institute, Harvard Institute of Chemistry and Cell Biology, and Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA 02138, USA. jinghuang@mednet.ucla.edu</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Zhu</LastName>
<ForeName>Heng</ForeName>
<Initials>H</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Haggarty</LastName>
<ForeName>Stephen J</ForeName>
<Initials>SJ</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Spring</LastName>
<ForeName>David R</ForeName>
<Initials>DR</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Hwang</LastName>
<ForeName>Heejun</ForeName>
<Initials>H</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Jin</LastName>
<ForeName>Fulai</ForeName>
<Initials>F</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Snyder</LastName>
<ForeName>Michael</ForeName>
<Initials>M</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Schreiber</LastName>
<ForeName>Stuart L</ForeName>
<Initials>SL</Initials>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
<PublicationType UI="D013487">Research Support, U.S. Gov't, P.H.S.</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2004</Year>
<Month>11</Month>
<Day>11</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>Proc Natl Acad Sci U S A</MedlineTA>
<NlmUniqueID>7505876</NlmUniqueID>
<ISSNLinking>0027-8424</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D029701">Saccharomyces cerevisiae Proteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 2.7.-</RegistryNumber>
<NameOfSubstance UI="D011494">Protein Kinases</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 2.7.1.1</RegistryNumber>
<NameOfSubstance UI="C546842">MTOR protein, human</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 2.7.1.1</RegistryNumber>
<NameOfSubstance UI="D058570">TOR Serine-Threonine Kinases</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>W36ZG6FT64</RegistryNumber>
<NameOfSubstance UI="D020123">Sirolimus</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D006801" MajorTopicYN="N">Humans</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D019169" MajorTopicYN="N">Jurkat Cells</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008954" MajorTopicYN="N">Models, Biological</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D040081" MajorTopicYN="N">Protein Array Analysis</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D011494" MajorTopicYN="N">Protein Kinases</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D040901" MajorTopicYN="N">Proteomics</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D012441" MajorTopicYN="N">Saccharomyces cerevisiae</DescriptorName>
<QualifierName UI="Q000187" MajorTopicYN="N">drug effects</QualifierName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D029701" MajorTopicYN="N">Saccharomyces cerevisiae Proteins</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D015398" MajorTopicYN="N">Signal Transduction</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D020123" MajorTopicYN="N">Sirolimus</DescriptorName>
<QualifierName UI="Q000494" MajorTopicYN="Y">pharmacology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D058570" MajorTopicYN="N">TOR Serine-Threonine Kinases</DescriptorName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="pubmed">
<Year>2004</Year>
<Month>11</Month>
<Day>13</Day>
<Hour>9</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2004</Year>
<Month>12</Month>
<Day>28</Day>
<Hour>9</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2004</Year>
<Month>11</Month>
<Day>13</Day>
<Hour>9</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">15539461</ArticleId>
<ArticleId IdType="pii">0407117101</ArticleId>
<ArticleId IdType="doi">10.1073/pnas.0407117101</ArticleId>
<ArticleId IdType="pmc">PMC527135</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Genes Dev. 1999 Dec 15;13(24):3271-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10617575</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 1999 Sep 10;285(5434):1733-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10481009</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2000 Sep 21;407(6802):395-401</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11014197</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 1999 Oct 29;286(5441):971-4</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10542155</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 1999 Dec 2;402(6761 Suppl):C47-52</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10591225</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 1999 Dec 9;402(6762):689-92</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10604478</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 1999 Dec 21;96(26):14866-70</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10611304</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2000 Nov 7;97(23):12672-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11070083</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2001 May 4;292(5518):929-34</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11340206</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2001 Aug 28;98(18):10320-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11504907</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2001 Aug 28;98(18):10314-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11504908</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2001 Aug 28;98(18):10031-3</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11526226</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2001 Sep 14;293(5537):2101-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11474067</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Natl Cancer Inst. 2001 Oct 17;93(20):1517-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11604470</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Drug Resist Updat. 2001 Dec;4(6):378-91</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12030785</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell Biol. 2002 Aug;22(15):5575-84</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12101249</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2002 Jul 25;418(6896):387-91</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12140549</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2002 Oct 25;298(5594):799-804</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12399584</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Rev Mol Cell Biol. 2003 Feb;4(2):117-26</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12563289</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2003 Mar 13;422(6928):208-15</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12634794</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Top Microbiol Immunol. 2004;279:259-70</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14560962</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2003 Oct 16;425(6959):671-2</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14562083</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell Biol. 2004 Jan;24(1):338-51</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14673167</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 1991 Jul 1;88(13):5724-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1648229</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 1991 Aug 23;253(5022):905-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1715094</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 1995 Oct 6;270(5233):50-1</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7569949</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 1997 Oct 24;278(5338):680-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9381177</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Opin Cell Biol. 1997 Dec;9(6):782-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9425342</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>EMBO J. 1998 Apr 15;17(8):2235-45</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9545237</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 1998 May 29;273(22):13375-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9593664</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 1998 Nov 10;95(23):13513-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9811831</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell. 2000 Jul 7;102(1):109-26</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10929718</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>États-Unis</li>
</country>
<region>
<li>Massachusetts</li>
</region>
<settlement>
<li>Cambridge (Massachusetts)</li>
</settlement>
<orgName>
<li>Université Harvard</li>
</orgName>
</list>
<tree>
<noCountry>
<name sortKey="Haggarty, Stephen J" sort="Haggarty, Stephen J" uniqKey="Haggarty S" first="Stephen J" last="Haggarty">Stephen J. Haggarty</name>
<name sortKey="Hwang, Heejun" sort="Hwang, Heejun" uniqKey="Hwang H" first="Heejun" last="Hwang">Heejun Hwang</name>
<name sortKey="Jin, Fulai" sort="Jin, Fulai" uniqKey="Jin F" first="Fulai" last="Jin">Fulai Jin</name>
<name sortKey="Schreiber, Stuart L" sort="Schreiber, Stuart L" uniqKey="Schreiber S" first="Stuart L" last="Schreiber">Stuart L. Schreiber</name>
<name sortKey="Snyder, Michael" sort="Snyder, Michael" uniqKey="Snyder M" first="Michael" last="Snyder">Michael Snyder</name>
<name sortKey="Spring, David R" sort="Spring, David R" uniqKey="Spring D" first="David R" last="Spring">David R. Spring</name>
<name sortKey="Zhu, Heng" sort="Zhu, Heng" uniqKey="Zhu H" first="Heng" last="Zhu">Heng Zhu</name>
</noCountry>
<country name="États-Unis">
<region name="Massachusetts">
<name sortKey="Huang, Jing" sort="Huang, Jing" uniqKey="Huang J" first="Jing" last="Huang">Jing Huang</name>
</region>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/RapamycinFungusV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 001899 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 001899 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    RapamycinFungusV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:15539461
   |texte=   Finding new components of the target of rapamycin (TOR) signaling network through chemical genetics and proteome chips.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:15539461" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a RapamycinFungusV1 

Wicri

This area was generated with Dilib version V0.6.38.
Data generation: Thu Nov 19 21:55:41 2020. Site generation: Thu Nov 19 22:00:39 2020